Air dry moisture content (2A1)

This method is required to adjust soil chemical results based on air-dry samples to an oven-dry (105oC)
basis. When the air-dry moisture content (M%) is known, the correction from air-dry
to oven-dry is as follows:


            Oven-dry result  =   [Air-dry result  x  (100+ M%)]/100


Electrical conductivity (EC) of 1:5 soil/water extract (3A1)

This test on milled air-dry sample at a soil/water ratio of 1:5 for 1 h is suitable for use on all soils, irrespective of whether acidic or alkaline. It usually underestimates the soluble salt status of soils containing natural or added gypsum, particularly if ³ 1% of gypsum is present. Such soils would have an EC of about 2 dS/m. Soil EC x 0.336 (Method 3B1) approximates percent total soluble salts, while approximate soil ionic strength (Method 3C1) at 0.1 bar (I0.1) can be calculated as follows: I0.1 = [0.0446*EC1:5 – 0.000173], where I0.1 has units of mM, and EC1:5 has units of dS/m @ 25oC.


Exchangeable Bases - Ammonium Chloride (15A1)

Method for measuring exchangeable bases (Ca2+, Mg2+, Na+, K+) - 1M ammonium chloride at pH 7.0


Suited for use on all soils, irrespective of whether acidic or alkaline, but preferred on acidic to weakly alkaline soils not dominated by solid-phase carbonates. Method 15A1 has no pre-treatment to remove soluble salts, with alternatives to remove them chemically (15A2) or to adjust for the presence of soluble sodium (15A3).


Exchangeable Bases - Ammonium Acetate (15D3)


Exchangeable bases - 1M ammonium acetate at pH 7.0.


This rapid method for exchangeable cations in non-saline acidic through to slightly alkaline soils has no pre-treatment for soluble salts. It should yield similar data to those of method 15A1, except it can overestimate exchangeable Ca in soils containing calcium carbonate.


Water soluble nitrate - automated colour (7B1)

This method uses the same 1:5 soil/water suspension described for method 3A1. The filtered or centrifuged aliquot is subjected to automated colorimetric analysis based on the Griess-Ilosvay reaction, either by continuous segmented flow analysis (sub-method 7B1a) or by flow injection analysis (sub-method 7B1b) The methods specify reporting nitrate-N (mg N/kg) on an air-dry basis. Note that in some highly weathered soils with a measurable anion exchange capacity, water may not extract all of the adsorbed nitrate-N.

pH: 1:5 SOIL:0.01M CaCL2 Suspension (4B1)

This pH test on milled air-dry sample is suitable for use on all soils, irrespective of whether acidic or alkaline. Values are usually unaffected by fertilisation prior to sampling, as changes to the soil’s ionic strength is masked by the calcium chloride. Code 4B1 indicates direct use of 0.01M CaCl2, at a soil/solution ratio of 1:5, with mechanical shaking for 1 h prior to pH measurement using calibrated electrodes positioned in the unstirred supernatant after settling of the suspension. Code 4B2 provides a similar measurement outcome but relies on the addition of 0.21M CaCl2 to a 1:5 soil/water suspension to achieve 0.01M CaCl2 prior to measurement of pH as for 4B1. Codes 4B3 and 4B4 are identical to 4B1 and 4B2, respectively, except the soil/CaCl2 suspensions are stirred during measurement. Method 4B5 codes for an MIR surrogate measurement. There is merit in separate use of both water and calcium chloride to measure soil pH.


Total soil nitrogen semi micro Kjeldahl,automated colour finish (7A2)

Method 7A2 is similar to Method 7A1, except that total N in the Kjeldahl digest is quantified by automated colorimetric procedures based on the Berthelot indophenol reaction. Method 7A2a relates to an automated colour, continuous segmented flow analytical finish, while Method 7A2b codes an automated colour finish by flow injection analysis. No significant difference is expected in results due to the choice of colorimetric finish. The test commence with finely-milled air-dry sample, while both methods specify reporting results as %N on an oven-dry (105oC) basis.


Total carbon - high frequency induction furnace (with prior physical removal of (6B3)

Following quantitative action / pre-treatment to account for or to physically remove (if present) charcoal and to chemically remove carbonate with excess 5% H2SO3 solution on a hot plate in a fume cabinet, the residual, re-dried soil sample is analysed for soil C by a suitable method, preferably Method 6B2b. The method involving carbonate removal and soil C analysis uses finely-milled air-dry sample, with weights varying with expected C concentrations. The method specifies reporting as %C on an oven-dry (105oC) basis.


Soil organic matter by loss-on-ignition (6G1)

This simple test involves the ignition of finely-milled air-dry sample initially to 105oC and then to 550oC. One hundred times the difference in sample weight in grams between these two temperatures, i.e, [100(Weight105C – Weight550C)] = Loss on ignition550C (LOI550C), which is assumed to approximate % Organic Matter.